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Project Rationale

“....to make Concentrated Solar Power (CSP) cost competitive in the intermediate power markets by
2015 (~$0.07/kWh with 6 h storage ) and in baseload power markets
($0.05/kWh with 16 h storage) by 2020....”  Source: DOE —SETP website

Potential technology areas identified for
CSP to realize cost reductions

= Receiver technology
= Concentrator design

= Advanced High Temperature Fluids (HTFs)
with enhanced thermal properties

= Thermal energy storage
= Plant size

Silica/Therminol
nanofluid




Project Objective

®" The goal of the project is to develop advanced HTFs by incorporating
multifunctional engineered nanoparticles. The advanced HTF as a single
medium will play the role of a enhanced heat transfer fluid and as a thermal
storage system.

v'Use simulations/modeling to identify candidate materials systems that will provide enhanced
thermal properties to HTFs and thermal storage

v'Develop processing routes to fabricate the appropriate nanoparticles of the selected material
system(s) and particle design, and incorporate them in commercial HTFs

v'Validate the improved behavior of the advanced HTFs by extensive laboratory scale testing
v’ Simulation of heat transfer enhancement and overall improved performance

v'Demonstrate the performance of the advanced HTFs on a test bed in collaboration with a
commercial partner/national lab

v’ Transfer technology to a commercial partner



Background
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Schematic of Various Components of Solar to Electric Energy Generation

Overall efficiency of solar Rankine cycle depends on T,
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Minimizing the temperature drop from pipe wall to HTF
on the collector side will enhance T

Higher T. ., can be achieved with a HTF with increased density, improved thermal

properties (conductivity, heat transfer, specific heat)

Storage of thermal energy in HTF will provide added advantage




Nanofluids
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Nanofluids: fluid in which
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Nanofluids are multivariable systems - Challenges

Thermal
Conductivity

Particle
*Shape
*Size

Material
*Additives

Viscosity

layer straeture



Efficiency of Nanofluids

where
AQ =  h = heat transfer coefficient, W/(m?2K)
h - — = AQ = heat input or heat lost,
AAT = A =heat transfer surface area, m?

= AT =difference in temperature between the
solid surface and surrounding fluid area, K

Property Based Figures of Merit :
laminar and turbulent flow
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W. Yu et al., Appl. Phys. Lett., 96, 2010, 213109



Experimental Protocol
= QOptimization of material properties for nanofluid development
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B Testing of nanofluid performance at various temperatures



Comparison of experimental data and estimation from
the Figure of Merit (turbulent flow) for EG/H20 (50/50)
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Accomplishments
Cu nanoparticles in Therminol HTF

* Chemical process
* Phase pure Cu nanoparticles synthesized

* Nanopatrticles size ~ 150-200 nm
(dynamic laser scattering)
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Accomplishments

Thermal Conductivity of Therminol HTF with Cu Nanoparticles
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Enhanced Thermal Conductivity

Stable fluid

Long-term stability of the fluids is important
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Accomplishments

Heat Transfer Measurements of Cu Nanoparticles in Ethylene Glycol
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» Heat transfer measured in laminar regime

» Results consistent with thermal conductivity enhancements

12




Accomplishments
High Resolution TEM of Core/Shell Nanoparticles

10 nm
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Accomplishments

TEM image of core/shell nanoparticles after several melting/freezing runs
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Accomplishments

Investigation on silica dispersion nanoparticles "’ BTt om (50, and GO .
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Timofeeva, Moravek, and Singh, manuscript submitted J. Colloid & Interface Sci.




Accomplishments

Investigation on silica nanoparticles in HTF

Optimization of surfactant content
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Accomplishments
Pumping Power, Pressure Drops & Erosion
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Summary

The goal of the project is to enhance the thermal properties (heat transfer &
storage) of HTFs by incorporation of multifunctional nanoparticles.

Copper nanoparticles synthesized and dispersed in Therminol. Increased
thermal conductivity and heat transfer property (in laminar regime) over the
base fluid.

Core/shell nanoparticles synthesized and dispersed in Therminol.
Structural evaluation completed. Stability of the core/shell nanoparticles
demonstrated.

Investigation to optimally disperse SiO, nanoparticles in Therminol
completed.

Test rig to evaluate mechanical effects of the nano-HTF completed.
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Future Work

= Establish stability of the copper/Therminol HTFs for higher particle
concentrations and conduct thermal property measurements

= Conduct detailed thermal analysis (heat transfer & calorimetric) on the
core/shell nanoparticles dispersed in Therminol

= Establish durability of the nanoparticles and optimize their
melting/recrystallization behaviors

= Synthesize metallic/intermetallic core/shell nanoparticles and disperse them
in salt based HTFs (Hitec XL)

= Conduct thermo-physical characterizations on the salt based nano-HTFs;
investigate performance & durability
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